Edge Computing and 5G
The advent of 5G signals a huge shift for the telecom industry—and not just in how fast your phone will download or stream. With faster speeds, there’s more space for big data and virtual reality, faster response times, and wide streaming coverage, meaning we can all enjoy our mobile entertainment like never. But most importantly, it helps to bridge that digital divide, and the Internet of Things (IoT) remains the hottest buzzword today when it comes to advancements in tech. And while many believed 5G was solely dependent on increasing speed, 5G is only one of 4 major trends, helping push the future of technology forward and these technologies are set to revolutionize communication across every industry vertical!
One key factor in allowing the widespread use of 5G technology is edge computing. The future of major applications and services relies on a process that doesn’t just have centralized computers as cloud resources for storage and computing. Without edge computing, connectivity could demand an increase in bandwidth usage leading to continuous congestion with peak-time traffic, thus not being able to take full advantage of the latency reduction it offers. Key applications that rely on quick responses from devices will not be able to function correctly if this bottleneck arises due to high levels of traffic which could potentially slow down devices and prevent them from making the quick decisions that are often needed in driving autonomous vehicles, treating medical emergencies, or preventing financial crime.
AI and Edge Device
There is a lot of money to be had in industries that are becoming increasingly digitalized as time goes on, and it’s been predicted by the Gartner Hype Cycle that by 2022, more than half of enterprise-generated data will be created and processed outside of data centres. By 2025, it’s been predicted by Gartner that 75% of such data will be analyzed and acted upon directly at the edge. The reason is that there will be a demand for faster speeds in which to process data and innovations in technology will result in more immersive experiences.
AI has become the go-to guiding light for the adoption of edge computing. Edge computing brings data collection closer to where the action is so that the necessary actions and applications can be completed much faster. AI helps with overcoming time constraints and providing users with a clear visualization of what is happening in real-time, lowering risks involved in rapid actions taken by machinery or humans that may require immediate attention.
Running artificial intelligence right on the edge is crucial for applications that need near-real-time feedback and optimization because it allows these machines to use highly sophisticated algorithms at the source of information which is often constantly changing. This type of technology is ideal not only in instances where power will be at a premium but also when speed and accuracy are essential factors that could save lives such as in modular technology used for surgical devices and machinery.
Blockchain
Blockchain technology significantly increases the efficiency of supply chains. This technology allows for the digitization of physical assets and the recording of all transactions in an immutable, decentralized ledger. Having a distributed record of all your transactions gives businesses and consumers greater insight into where their products come from, in what conditions they were produced, and who is involved along the way. Blockchain technology can also be applied to other industries.
Blockchain provides an interconnected channel to bridge and centralize digitalized processes between enterprises that don’t necessarily belong to the same company, system, or business ecosystem. Blockchain has enabled this new way of doing business because it has revolutionized the way we do things from conducting and controlling every move our machines make, to protecting them and easily identifying threats or intruders.
A new technical architecture is required
The evolution of 5G will be characterized by the rapid evolution of requirements and technologies, with the technology itself expected to become obsolete as soon as 2025, but the business model will last a lot longer. Even if 5G is considered an evolution that leads to the deployment of new technology, the technical standard will still be developed to deliver a new system that will support a new set of services and business models that will enable the replacement of 4G. The business model will, instead, remain unchanged, with operators still building upon the most important 4G business model by charging for bandwidth, though the usage of 5G should be more intensive and, therefore, more expensive.
However, migration to 5G technology will be a long process requiring several years at least. This requires the implementation of a cloud-native core network, extensive network virtualization, and automation technologies while keeping the device’s connection to legacy networks available. To be able to implement this strategy, we have chosen the Brick Oriented Architecture (BOA) enabling us to provide better services and ensure our customers a competitive advantage also in future business models leveraging Digital Interoperability.
The widespread adoption of 5G for consumer applications will benefit from initiatives in which CSPs can participate. When considering the business case for a technology, CSPs must examine possible benefits across their entire value chain, as well as the value that could be created by creating or enabling new applications and services. A balanced approach to such factors enables vendors and operators to deliver digital services that meet customer expectations while optimizing operational costs associated with 5G deployment. Movement by governments towards an environment that promotes the rapid adoption of 5G is also an important step in the process. This includes both the availability of spectrum and regulatory regimes that make it possible for sufficient investment in network infrastructure to take place.
Digital interoperability is a vital component of the new-generation technical capability, which gives companies the tools to create and adopt business platforms that will continue to operate effectively as they grow. One benefit of digital interoperability is that it is fast and cost-effective, allowing businesses to build and test market prototypes in a short period. The Metafyre 5G SDK is a software development kit that helps developers to create new software applications, as well as create prototypes of new products.